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Starting from the motion of the free electron, a model is developed for the impact ionization
of electron-hole pairs in the presence of a strong transverse magnetic field. The ionization
rate was found to depend only on the quotient of the effective electric field strength divided by
the magnetic field Eo/B. For n-InSb the ionization rate was calculated in dependence of
E /B for different values of the mean free path for optical-phonon scattering. Impact ion-

ization begins at Eqy/B=2,7X10° m sec!.

I. INTRODUCTION

The problem of impact ionization in semiconduc-
tors in crossed electric and magnetic fields was
_first investigated by Toda and Glicksman.® They
suggested the “transverse breakdown,” and impact
ionization in the Hall direction at comparable or
lower electric fields than in the absence of a mag-
netic field. But measurements by Ferry and Hein-
rich? showed a decrease of the ionization rate caused
by the magnetic field. This result was in agree-
ment with unpublished measurements done in our
laboratory. Therefore, and because of our interest
in the ionization process in the somewhat different
geometric conditions of a # pinch, ® we developed
a model for the impact ionization in crossed fields,
in which the Hall field is regarded as an independent
physical quantity. The decrease of the ionization
rate predicted by our model therefore does not ex-
clude the existence of a transverse breakdown, but
only indicates that this effect will be caused by a
nonlinear dependence of the Hall field strength on
the magnetic field, as was also predicted by
Schmidt and Nelson. *

Our model is valid for a semiconductor with the
following properties: (a) moderately doped # type,
(b) parabolic conduction band, (c) dominant optical-
phonon scattering, (d) isotropic effective mass.
Starting from the equation of motion of a free elec-
tron, we investigated (Secs. II-V) the behavior of
an electron in a magnetic field. The velocity vector
of such an electron is moving on a gyration circle
which is not centered in the origin of the velocity
plane. To get a one-dimensional (energy) descrip-
tion, we divided this gyration circle into a “fast”

half and a “slow” one, as determined by the abso-
lute value of the velocity. The energy of the elec-
tron was averaged separately over each half circle
and the continuous motion of the velocity vector on
the gyration circle was replaced by transitions be-
tween the two energy mean values. With these
transitions and those caused by the scattering with
acoustical and optical phonons, the Boltzmann equa-
tions and two continuity equations for the motion

of the particles in the energy space are formulated
(Sec. VI). In Sec. VII this system of equations is
solved and the energy distribution of the electrons
is determined. The ionization rate, the number of
electron-hole pairs produced by one electron within
unit time, is given in Sec. VIII. It was found to de-
pend on u= (E2+E%)"%/B only. Here E, is the ex-
ternal electric field, E, is the Hall field, and B is
the magnetic field.

II. SOLUTION OF EQUATION OF MOTION

Moving in the crystal the electrons are not sub-
ject to a homogeneous friction, but lose their energy
by single impacts. Between the impacts the behav-
ior of the electrons is described by the equation of
motion for free particles:

‘fl—;’=-%(ﬁ+w§), (1)
where ¢ is the time, —e is the electric charge of
the electron, m* is the effective mass, ¥V is the
velocity, B is the magnetic field, and E is the elec-
tric field at the position of the particle. The elec-
tric field is the sum of the applied external electric
field E, and the Hall field E .

If the magnetic field is perpendicular to the elec-
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slow”
. fast”

FIG. 1. Gyration circles (solid circles) in the z-y plane
of the velocity space, circle of constant energy (dashed),
and boundary between the slow and the fast half-circles.

tric fields, as is always assumed here, and if we
choose the following spatial arrangement in Carte-
sian coordinates:

0 B
E=| E, | and B=[ 0 ,
E, 0

then no force on the electrons in the x direction
will exist. It is thus possible to change from vec-
tors to complex coordinates:

V=0,+10,,
dv z ey 2)
T mE (Eg+iEy +ivB).
The solution of this equation is given by
E,~iE E,-iE
v(t)= <vo+_1_1§’__;> e-iuct __Hi;g , (3)

where w,=eB/m* is the gyration frequency and
Vo=Vg, + 10y is the velocity of the particle at the
time £=0. The first term of v(f) represents con-
centric circles in the z-y plane of the velocity
space if E,, E,, and B are constant. Their radii

A

depend on the initial conditions only. The second
term in (3) displaces the center of the gyration cir-
cles by the constant drift velocity (iE,— E)/B out
of the origin (Fig. 1). This means that between im-
pacts the electrons run on closed orbits within the
velocity space in a certain and, for most of them,
rather narrow region of energy. They change
quickly between the minimal and the maximal energy
of their orbit. But to increase their energy above
the maximal energy of the orbit, they have to be
scattered onto a circle with a larger radius.

In order to get a condition for the energy gain,
we divide the velocity plane by a line into two parts
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so that each gyration circle is divided into a “slow”
and a “fast” half. Fast means that everywhere on
this half-circle the kinetic energy of a particle is
higher than anywhere on the slow one. Disregard-
ing at first the loss of energy by phonons, one real-
izes an increase of the radius and also the possibil-
ity of an increase of the energy in the case that the
electron undergoes an impact and is scattered from
the fast into the slow half of the velocity plane.
Scattering into the opposite direction results in a
loss of radius and therewith the possibility of a loss
of energy.

'III. DESCRIPTION OF MODEL

The approximation which is characteristic for our
model is the replacing of the continuous change of
energy under the influence of the fields while the
electrons are moving on the gyration circles by a
jumping between the two average values of the en-
ergy of the slow and the fast half-circles.

Let W be the kinetic energy, ¢ be the phase angle
of a particle on the gyration circle, and p(¢) be the
probability for the particle to have the phase ¢, then
the time-averaged value of the energy W is given by

W= [“2w()p(9)do/ [ *(¢)de . (5)
3 0y

p(@) certainly is a function of 7, the mean time be-
tween two scattering processes. w,7 gives the
average part of gyration for the electrons between
two impacts. The larger w,T, the less p(9) will
vary with ¢. Especially if w,7 is in the range of
27 or larger, p(¢) will be nearly constant. Then
(5) is simplified to

1 0
Po— ¢ 0y

_ 2
W= W(p)de when w,7> 27, (6)
w,T> 27 is a condition for the magnetic field:

B> 2mm*/er, (7

which means that unfortunately the model developed
here cannot be applied for the interesting limit
B-0.

IV. CALCULATION OF AVERAGE VALUES OF ENERGY

From Eq. (3) one obtains the kinetic energy of
the particles:
1 * 2 * EEI+E5 EH E‘
W=3sm |’Ul =m¥|—pr— tlep ~p Yu

E E, E%+E?
+§(v§,+vﬁy)+<vw f — Vg —Bi - —LBE——“)coswct

E
- (vo, —Bl+voy -%”—)sinwct] . (8)

To calculate the average values, let us consider an
electron which has its minimum energy at the time
t=0. Then the slow half-circle extends from
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¢ =w,t=—-57 to 37 and the fast one from 47 to 7.
Moreover, the choice of the time origin gives a
relation between v, and vg,:

UOz/voy=_EH/Ez . (9)
With (4) one obtains
____Eu Ey
YT G e "B 1o
and
_ ~-E, E&
Voy= WR+ B (11)

Thus Eq. (8) becomes

* Ey+E:  (E%+EZ\/?
W(R, t)= 7_n2_ I:RZ+—L;2—‘ —<—”£3—5> Rcoswct] .

(12)

In (12) the electric and magnetic fields appear
explicitly only in the combination (E2+E%)/B?, that
is, the square of the drift velocity » of the gyration
center. With u=(E%+E%V2/B

W(R, t) = tm*(R®+u® —u R cosw,t). (13)

This leads to the average values

e -2

(14)

1 T/2 m*
Ws=; /o dect—- 2

for the slow half and

3r/2 * 2
Wf=%f dect=m7 [(1—%>uz+<R+%u) ]

r/2
(15)
for the fast half of the gyration circle.

Figure 2 shows W and W; as functions of the
radius R. They are two parabolas which intersect
at the W axis. The minimum values for W are
larger than zero because the state W=0 cannot be
considered isolated any more due to the averaging
process.

V. TRANSITIONS BY SCATTERING

We are interested in the impact processes not
only with regard to the energy loss, but also in or-
der to get the direction in which the particle is
scattered after the collision. The loss or gain of
the radius depends on this direction. The averaging
of the energy is the reason that the state of motion
of the particle is no longer characterized by its vel-
ocity vector, but by its averaged energy and the in-
dex s or f corresponding to the region of the velo-
city space in which it stays. The question of the
direction then becomes only a question of whether
the index s or f changes after the collision or not.
This means we have only to distinguish between for-
ward and backward scattering in the same way as
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FIG. 2. Mean values of the energy of the fast and the
slow half-circles plotted as a function of the radii R of
the gyration circles and the possible transitions from a
given energy value W.

was done by Dumke.’ The scattering times are
characterized by the indices o and a for optical and
acoustical-phonon scattering and v and » for forward
and backward scattering:

From the two states of motion belonging to one value
of energy the following transitions are possible
(Fig. 2).

(a) The electrons can undergo collisions by which
acoustical phonons are emitted. The loss of energy
is negligibly small and therefore forward scattering
does not change the state of motion. There are only
the transitions 1 and 2 in Fig. 2 by which the back-
ward-scattered electrons pass over to the other
state of motion belonging to the same energy.

(o) By optical-phonon scattering the particles
lose the constant energy Zw,. Therefore by forward
and backward scattering they reach the two states
of motion, the energy of which is lower by 7w,
(transitions 3 to 6).

(¢) Two further transitions describe the behavior
of the electrons under the influence of the electric
and magnetic fields. These are vertical transitions
(7 and 8) in Fig. 2, corresponding to the change of
the particle into the other half of its gyration cir-
cle. The frequency of these transitions is w,/7.
The energy gain or loss can be calculated from Eqs.
(14) and (15). We obtain for transition 7

8m* , 4m* [2w 1 /2
K1=—nz—uzi - ul:m-(l—;r'g>uz:| (16)

and for transition 8

8m* 4> oW 1/2
KzzL;lz—uz— " u[—-—(l—fg)uz] , @7

T m*

where K, is a negative quantity. The ambiguity of



2578

the sign of the second term of K, results from an
ambiguity of W, for W < imu® The following calcu-
lation involves the region W> imu® only, where the
positive sign is valid.

(d) Above the ionization energy W;, ionization
impacts also occur in which the particles lose all
of their energy generating a new electron-hole pair.

VI. FOUR BASIC EQUATIONS

The transitions mentioned in Sec. V completely
determine the behavior of the electrons. It is pos-
sible to formulate with them the Boltzmann equation
for the distribution function s(W) of the particles
staying just in the slow half of their gyration circle,
and for the distribution function f(W) for the elec-
trons in the fast half. The sum of these two func-
tions gives the energy distribution for all electrons
n(W):

n(W)=s(W)+f(W).

The Boltzmann equations have the form

9s 9s W Ds

8s  8s 8W _Ds 18

8t  0W 8¢ Dt/ transitions 18
and

o Y W _Df (19)

8t  8W 8t Dt iransitions

The second terms on the left-hand sides vanish
because the continuous change of energy is replaced
by energy jumps, all of which are included in the
terms on the right-hand sides. In the stationary
state the partial derivatives with respect to the time
also vanish, and therefore the left-hand sides are

zero:
W,
0=2§ =_s(__+_.1_+—-£>+_f_
Dt transitions To Tap m Tab
°° w') s(W’)
AW’ [d(W+hiwy— W' (f( )
o o o= w (L5 + S5

4 W A
+O6(W+K, - W) ;Qf(W )].

and
Df (1 1 &) s
=== ==fl—+ + —
Dt transitions f To " Tap " m Tab
® ([ SW)  f(W)
+/; aw [5(W+iiw0— w’ )<Tab(W') + T,,,,(W'))

+0(W+Ky—W') -c:—ris(W'):l .

The integrals describe the growth of the distribu-
tion function resulting from particles coming from
other energy values. After calculation of the inte-
grals one obtains
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oomofLl, L, e, S, sWehw)
To Tap T Tay T W+AWe)

fFW+hw,) w
+ m + —‘"3' f(W+K,) (20)

oL, L e\, s, JWehwg
0= _f<'ro * Tap T >+ Tap * Too(W +Tiwg)

s(W+hiwg) = w,
+—_—Q_Tob(W+ﬁwo) + s(W+K,). (21)

In the following, two other equations for the flux
of particles through the energy distribution are de-
rived. We assume that the influence of the recom-
bination and the newly generated particles on the
energy distribution is negligibly weak, and further-
more that the electrons lose their whole energy in
the ionization impacts which means that they reenter
the distribution at energy zero. Then the conserva-
tion of the stationary state requires a flux of parti-
cles through the distribution which compensates for
the loss of electrons with energies above the ioniza-
tion energy due to pair generation. This flux di-
vided by the total number of electrons contained in
the distribution gives the ionization rate.

Below the ionization energy the flux of particles,
&, is constant. We are able to set up two equations
for this: one for the flux reaching an energy value
from below and another for the flux leaving the en-
ergy value in the upward direction. Because there
are different transitions from each, these are given
by the sums of the fluxes belonging to the different
transitions;

@ =22 Ks(W) - %2 K f(W+K,) - ﬁwo%
(22)

is the equation for the flux leaving an energy value
in the upward direction. The first term on the
right-hand side describes the particles which change
from the slow into the fast half and gain thereby the
energy K,, while the second describes the opposite
process, i.e., particles coming back from the fast
into the slow half losing the energy K,. The last
term stands for the electrons falling down from
higher to the considered energy due to optical-pho-
non scattering.

The equation for the flux from below is

n(W)
(W) *

(23)
Here again the first two terms mean the gyration
and the last one the optical-phonon scattering (K, is

negative). These two equations, (22) and (23), and
the Boltzmann equations (20) and (21) form the basic

w w
o= ;ri K f(W) - T“' Ky,s(W+K,) -fiw,
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system which allows us to determine the distribu-
tion function (W) and the ionization rate g.
VII. SOLUTION OF SYSTEM OF EQUATIONS

Addition of Egs. (20) and (21) and elimination of
s(W+K,) and f(W +K,) using the two equations for
$ gives

1 1\, Iwg) n(W)
“’(Kl ¥ Kz>_ B (“ Kz> 7,(W)
wg\ n(W+7w,)
o\ ZAT TR
* (1 K, ) T, (W +Hwg) (24)
We use the following approximation:
(W +Rw,)  n(W) [ 8 /1N 1 o
T Whiwy) ~ 1, (W) 90 n(W) 8W<-ro)+ 7, (W) aW:I‘
(25)

Under the assumption that the mean free path for
optical-phonon scattering is constant,  i.e. , that
1/7, is proportional to wY a’ one obtains

LB (1)L
° oW \r,) 2W ’
3=- (1+Kadlioo= KD B,
2W(K1+K2) To
lwg—K fwg on
_——0 71 ke 2T
K +K, K T, OW ° (26)
|
fwo—K)\ hwy 8°n Ziwy | K (Hwy~K,\|w
2o ) 2o — - [ =2 (] 1) 1220
K2<K1+Kz> To W +[3 Kx"Kz+W<K1+Kz/ To

It is possible to solve Eq. (30) analytically if con-
stant coefficients are assumed. We will use for
these coefficient values which correspond to the ion-
ization energy. The error due to this approximation
is certainly small, because above W; the distribu-
tion function decreases quickly to zero, and there-
fore most of the particles of the high-energy region

|

A= [8— 2w, /(K —Kp) (K, +K;) +
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In Eq. (26) the electric and magnetic fields appear
only through K; and K, in the combination « = (E%
+E%Y2/B, the drift velocity of the gyration center,
and the relaxation time for acoustical-phonon scat-
tering as well as the distinction between forward and
backward scattering with optical phonons do not
appear.

Below the ionization energy & is constant and may
be denoted by &,=&®(W;). Above the ionization en-
ergy ® decreases because of the particles which
have made ionization impacts below the energy con-
sidered. That means

Y n(w) _
‘I>(W)+/W.’ —Tl—dW—Qo, 27

where 7; is the mean time for ionization impacts.
This equation leads to two others:

n(W)

b
8 _ 28
oW T ( )
and
f 2W) - s, . (29)
Wi Ti

Using (28) in (26) one obtains a second-order differ-
ential equation for the distribution function #(W) in
the high-energy region W>W;:

on

oW

7w 2w K, (Fwy—K 1

2o 2% 22 (BZXoT M) | = =
+{2W‘ro|: K=K 2W(K1+Kz )] T,}" 0. (30)

f

will be found near the ionization energy. By arbi-

trarily fixing the distribution function at the point

W=W,; as unity [o(W,)=1], we get
n(W)=e™ (31)

with

1
ow, *

2(%0) 0 —Kl)Kg

_ [8- 21w, /(K ~K,) (K, +K5)

[([3 ~ 2w,y / (K —K,) (K, +K,) N
2(ﬁwo —Kl)Kz

1 2
o,

ZW{ (ﬁwo —KI)KZ

Using the obtained distribution function in this way
for the high-energy region in Eq. (29), one can cal-
culate ®. To get the ionization rate g, the flux &
has to be divided by the total number of electrons

1 (K, +K)To /T, 12
Py Bl e e IR

[
contained in the distribution. That requires the
determination of the portion of the distribution func-

tion for W< W, from (26). The general solution of
(26) is



2580 H. REUTER AND K. HUBNER 4
nm=exa| [ (Kt L Naw] Mj'”_roa_@_ffa_ pr <_f_cL+_f_<a._+_1_>dW]dW}
Ly, Kl -Ky) T 2w vy BwoKyliwo—K) o \Kaliwo-Ky) * 2W, :

The integrals in the exponents can be solved

(33)

v \KGiw, -Ky) ~ 2W,

- Y _Kl_"ﬁ__ 1 dw =
o K1+Ka—ﬁw0

The remaining integral in (33) was solved numeri-
cally. The solution was obtained by starting at W;
and going downward to the energy of the optical
phonon 7w, In agreement with Dumke we assumed
the distribution function to be constant below this
energy since the most important mechanism for the
loss of energy, the optical-phonon scattering, can-
not occur there.

Integration of the now completely known distribu-
tion gives the total number of electrons N:

N= [ n(W)aW=liw, h(twg) + J,7, n(W)dW. (35)

Division of the flux of particles & by their total
number N leads to the ionization rate

g=%/N .
VIII. RESULTS AND DISCUSSION

A numerical calculation of the ionization rate was
done for n-InSb. The following values were used:

W,;=0.25 eV, 7wy=0.025eV, 7,=2x10"" sec,

u=2.7-5.9x10° m sec”’, T="71°K,

5 , . T T
g
sec”!
108 ]
[ ]

5

. . ) ) msec! . u
10 1 2 3 4 5 %105

FIG. 3. Ionization rate of n-InSb (77 °K) plotted as a
function of % =Ee¢s/B. Upper line Ay, =0. 25, middle
line A,y =1.25u, and lowest line Ay, =2.5p.

_hwo-3(K +Kp) ’ fiwg = K(W)
ﬁwo —K1(W0)

1 K +K, N Ky (W)
2 K1+Kz—ﬁw0 KZ(WO)

1 w
- zln\m' . (34)

Aopt=0.25 u, 1.25 4, 2.5 K.

The values for 7; and the ionization energy W; were
taken from Dumke’s paper. Since the mean free
path for optical-phonon scattering is not known pre-
cisely, it was varied in order to determine its in-
fluence on the ionization rate.

As mentioned just before, the ionization rate de-
pends on the electric and magnetic fields only
through the quantity u= |Ee|/1B|. This dependen-
cy shows the analogy of the problems treated here

to those in gas plasma physics.” The numerical re-

sults are given in Fig. 3. Below u=2.7x10° m/sec
impact ionization does not occur, but above this
value the ionization rate rises rapidly and shows a
saturation at a value between 2x10° and 3x 108
sec™’. The influence of the mean free path on the
ionization rate is remarkably small: Although A,
in the highest and in the lowest curve differ by a
factor 10, all curves are inside the limits of error
expected for such experiments. Furthermore, it
is striking that the ionization rate increases with
decreasing mean free path, whereas a decrease is
obtained in the theories for impact ionization in an
electric field alone.® The increase results from
the fact that the energy loss due to optical phonons
is less important here than the possibility of the
particle being scattered into a gyration circle with
a larger radius.

Finally in all the experiments the value of the ion-
ization rate is influenced also by the Hall field,
whose dependency on the applied electric and mag-
netic fields may be complicated in special cases.
Therefore it was not possible to give a quantitative
comparison of the theory with the experiments men-
tioned above. Certainly no formula exists which
is valid for all geometries and all plasma densities.
At this point further microscopic investigations
should begin. They would also give information
about the transverse breakdown observed by Toda
and Glicksman, perhaps in the way, that under
special conditions of the geometry and the plasma
density, a region will exist in which the Hall field
increases more than proportionally to the magnetic
field.
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The effect of a Coulomb interaction between charged traps in an amorphous semiconductor
is investigated within the premises of the Mott-Cohen-Fritzsche-Ovshinsky model.
The grand partition function is expressed as a functional integral over a set of Gaussian ran-
dom fields. The free energy is expressed as a sum of the mean-field result plus fluctuations
aboutthe meanfield. It is shown that for the system under consideration, the mean field is
just the Hartree self-consistent field and that at T'=0 °K it represents the exact ground state.
It is shown that the fluctuations about the mean field represent correlations in the system.
Approximate expressions for the mean occupation number and the renormalized energies of
the charges are obtained as well as the renormalized single-particle density of states. The
excitation spectrum of single quasiparticles, within any given band, is shown to have a quasi-
gap. It is shown that the effect of a Coulomb interaction between the charged traps is to re-
duce the density of states at the Fermi erergy by a factor of 2 below its value in the absence

of interactions.

I. INTRODUCTION

The discovery of novel phenomena in amorphous
semiconductors has prompted considerable theo-
retical interest in these materials. The theoretical
attempts are aimed towards the understanding of
the electronic structure and transport in disordered
systems, in particular in covalent amorphous
semiconducting alloys. There exists, as yet, no
rigorous theory of the electronic structure in dis-
ordered systems. There has emerged, however,

a basic band model (which was synthesized by
Mott! out of earlier work) which illustrates the
universal features of the electronic structure of
disordered materials. This basic band model has
been further elaborated and clarified, in the con-
text of amorphous semiconductors, by Cohen,
Fritzsche, and Ovshinsky? (we will refer to it as
the Mott-CFO model). The basic features of their
model are displayed in Fig. 1 via a sketch of the
density of states. For our purpose it is necessary
to briefly review some of the essential assumptions
underlying the model. They postulate that in an
amorphous semiconductor there exist bands of
extended states, that these bands have tails of

localized states, and that in sufficiently disordered
materials (such as alloys or bad films) these tails
overlap in the forbidden gap. They further assume
that every localized state has a well-defined parent-
age, i.e., it is always possible to assign a valence
or conduction character to a localized state in the
gap. The overlapping of the tails and the fact that
there is a finite density of localized states at the
Fermi energy has many interesting consequences.
Since valence states are electrically neutral when
occupied and conduction states electrically neutral
when empty, there results a random distribution

of localized charged traps throughout the material,
positive trapped holes (corresponding to the empty
valence-band tail above the Fermi energy E ) and
negative trapped electrons (corresponding to the
occupied conduction-band tail below Ez). The over-
all electrical neutrality of the material is guaran-
teed through a proper choice of Ez. One believes
that there may be as many as 10 of these localized
states (per cm®eV) at E;. One anticipates that such
a distribution of localized charges will have a sig-
nificant effect on carrier kinetics. One would like
to know, for example, what the effect would be of -
these localized charges on the carrier concentra-



